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Abstract: Three-dimensional structured illumination microscopy (3D-SIM) plays an essential
role in biological volumetric imaging with the capabilities of improving lateral and axial resolution.
However, the traditional linear 3D algorithm is sensitive to noise and generates artifacts, while
the low temporal resolution hinders live-cell imaging. In this paper, we propose a novel 3D-SIM
algorithm based on total variation (TV) and fast iterative shrinkage threshold algorithm (FISTA),
termed TV-FISTA-SIM. Compared to conventional algorithms, TV-FISTA-SIM achieves higher
reconstruction fidelity with the least artifacts, even when the signal-to-noise ratio (SNR) is
as low as 5 dB, and a faster reconstruction rate. Through simulation, we have verified that
TV-FISTA-SIM can effectively reduce the amount of required data with less deterioration.
Moreover, we demonstrate TV-FISTA-SIM for high-quality multi-color 3D super-resolution
imaging, which can be potentially applied to live-cell imaging applications.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

With the advantage of chemical specificity, optical fluorescence microscopes have been widely
used in the field of biological research and medical diagnosis. However, due to the optical
diffraction limit, the resolution of a conventional optical microscope is constrained to around
200 nm. To circumvent the resolution limit, numerous super-resolution imaging techniques
have been developed since the 1990s, including Stimulated Emission Depletion (STED) [1],
Structured Illumination Microscopy (SIM) [2–4], Photoactivated Localization Microscopy
(PALM) [5,6], and Stochastic Optical Reconstruction Microscopy (STORM) [7,8]. STORM
and PALM, classified as Single-Molecule Localization Microscopy (SMLM), are based on
localizing each emitter in each sparsely labeled image. As many images are required, the imaging
acquisition period is inevitably prolonged, making live-cell imaging difficult. On the other hand,
STED relies on using a doughnut beam to deplete and reshape the Point Spread Function (PSF).
Though the resolution of STED is improved by utilizing the doughnut beam, photobleaching and
phototoxicity are also introduced. In contrast, SIM is popular in cell bioimaging, especially in
live-cell imaging, because of its short imaging duration and relatively low excitation intensity.

In recent years, three-dimensional SIM (3D-SIM) has become a much more desirable imaging
modality for biomedical studies [9–11], and improving the axial resolution is a core target
for achieving high-quality 3D imaging. Compared with 2D-SIM, another excitation beam is
introduced in 3D-SIM, and the spatial fringes are formed by the interference of three excitation
beams, thus extending the Optical Transfer Function (OTF) in the axial direction [12]. To improve
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the axial resolution, researchers have combined 4Pi structure to double the light collecting angle,
such as 4Pi confocal fluorescence microscope [13], image interference microscopy (I2M) [14],
and an advanced method combined I2M with incoherent interference illumination (I5M) [15].
A new type of wide-field light microscopy, I5S, which means the combination of the lateral
performance of SIM and the axial performance of I5M, has been recently applied to 3D-SIM
[16]. By interfering with six beams in the object space, the OTF in I5S is further extended in the
axial direction, thus offering an axial resolution improvement when compared with conventional
3D-SIM using a single objective lens, thus providing more biological applications.

For SIM reconstruction, many linear reconstruction algorithms have been proposed [2,17–20].
However, the fidelity of those algorithms is often challenged [19,21] due to the reconstruction
artifacts caused by post-processing algorithms [17,22,23]. In the meantime, the axial scanning
process with a certain number of spatial fringes shifting will take a relatively long duration
which is not conducive for live-cell imaging, although it is indispensable in 3D-SIM. It has been
reported that the number of images needed in 2D-SIM can be reduced to four to shorten the
duration of image acquisition [24], but the image quality will deteriorate significantly, and the
concept has not been transferred to volumetric imaging. Deep Learning is also a plausible method
for the reconstruction of SIM [25–28]. However, the performance is excessively dependent on
ground truth, and transfer learning is inevitable for different samples and systems. The nonlinear
gradient descent structured illumination microscopy (NGD-SIM) [29], proposed by us earlier,
provides a way to reconstruct 3D-SIM images with less data. However, the reconstruction speed
is too slow, and the performance is not that ideal when in high-noise conditions.

To date, though excellent achievements have been made in 2D-SIM [17,19], there is still a
lack of 3D-SIM algorithms that are efficient enough to reduce the requirement of the image
number and obtain a better image quality at the same time. Here we propose a novel 3D-SIM
algorithm based on total variation (TV) [30] and fast iterative shrinkage threshold algorithm
(FISTA) [31], called TV-FISTA-SIM. TV-FISTA-SIM realizes faster convergence speed and
reduces its convergence complexity to O(1/t2) [30]. Under the condition of reduced raw image
data and high noise, TV-FISTA-SIM can still recover high-quality super-resolution images due to
its breakneck speed of convergence and the constraints of total variation regularization, enabling
the possibility of live-cell 3D-SIM imaging. In addition, we publicly released the codes to benefit
the community and expect the proposed TV-FISTA-SIM would expand the application scope of
3D-SIM in the future.

2. Principle

2.1. 3D-SIM reconstruction

In 3D-SIM, fluorescent samples are illuminated with spatially modulated patterns varying in
lateral and axial dimensions. If fluorophore density S(r) is excited by an illumination pattern I(r),
the resulting emission distribution E(r) is

E(r) = S(r)I(r). (1)

Considering the point spread function (PSF) of the imaging system, the obtained data D(r) can be
represented as a convolution of PSF with the product of illumination pattern I(r) and fluorophore
density S(r) as:

D(r) = [I(r) · S(r)] ⊗ PSF(r). (2)
Transforming Eq. (2) to the Fourier domain, the spectrum of the images can be formulated as:

D̃(k) = [Ĩ(k) ⊗ S̃(k)] · OTF(k), (3)

where OTF(k) represents the optical transfer function of the microscopy system. The existence
of OTF blocks the high-frequency information, thus constraining the spatial resolution of
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conventional wide-field microscopy. In 3D-SIM, the illumination pattern I(r) can be represented
as the sum of spatial components of different harmonic functions [3],

I(rxy, z) =
∑︂
m

Im(z)Jm(rxy), (4)

where m = 0,±1,±2, Im(z) and Jm(rxy) denote two individual functions axially and laterally. The
illumination patterns are kept fixed to the focal plane. When obtaining raw 3D-SIM data, the
sample region of interest is placed at the focal plane. Therefore, the depth-resolved emission
density can be represented as:

E(r) =
∑︂

z′

∑︂
m

S(r)Im(z′ − z)Jm(rxy), (5)

where z and z′ refer to the axial position of the sample and illumination pattern, respectively.
Thus, the spectrum of detected images can be transformed from Eq. (3) as:

D̃(k) =
∑︂
m
[S̃(k) ⊗ J̃m(kxy)] · OTFm(k), (6)

where OTFm(k) denotes of the Fourier transformation of PSF(r) · Im(z) in order of m. Due
to the assume that Jm(rxy) and Im(z) can be represented as the harmonic functions [3] like
Jm(rxy) = eim(2πprxy+ϕ), Eq. (6) can be formulated as:

D̃(k) =
∑︂
m

eimϕ S̃(k − mp) · OTFm(k). (7)

This shows that every raw 3D-SIM image can be understood as the sum of different orders of
frequency components.

In practice, 3D-SIM generally requires periodic illumination patterns from three directions,
and five phase shifts are required in every direction. Therefore, a total of fifteen raw images
are required for reconstructing one slice in a volume. With the periodic illuminating patterns,
undetectable high-frequency information will be shifted into the observation region and collected
by the objective lens. Then, using a frequency-domain reconstruction algorithm in conventional
3D-SIM, different frequency components are moved back to their original positions to achieve an
extended spectrum, thus improving the overall spatial resolution.

2.2. Total variation minimization

Considering a linear inverse problem: y = Hx + n, where x ∈ RN is the expected target image
calculated from the observation y ∈ RM that contains unknown noise, H ∈ RM×N is the transfer
function of a system, and n ∈ RM is the noise (Gaussian noise by default). When this problem
is ill-conditioned, the standard way of estimating the target image is to solve the following
optimization problem:

F(x) = f (x) + g(x), (8)

where f (x) ∆
= 1

2 | |y −Hx| |2l2 is the traditional loss function of the l2 norm and g(x) denotes the
regularization term, defined as [30]:

g(x) = λ | |Dx| |l1 = λ
N∑︂

n=1

D∑︂
d=1
|[Ddx]n |, (9)

where N is the number of pixels in the image, d represents the dimensionality of the image (d = 3
in volumetric images), Dd denotes the dimensionality difference while ensuring proper edge
conditions within the image, and | | · | |l1 denotes the l1 norm. Total variation regularization can
effectively stabilize the solution of ill-posed inverse problems [30,32] and has proved successful
in a wide range of applications in sparse recovery of images from incomplete and corrupted
measurements [33–35].
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2.3. Fast iterative shrinkage thresholding algorithm (FISTA)

Due to the existence of non-smooth regularization term in the loss function, one of the ideal
methods of solving Eq. (7) is Iterative Shrinkage Thresholding Algorithm (ISTA) [36,37]:

xt ← pL(xt−1 − γt∇D(xt−1)), (10)

where the gradient can be expressed as ∇D(x) = HT (Hx − y), the step size is taken as γt = 1/L
with L being the Lipschitz constant to ensure the convergence [31], and the proximal operator is
defined as pL(z)

∆
= argmin

x∈RN

{︂
1
L g(x) + 1

2 | |x − z| |2l2
}︂
. For a standard ISTA algorithm, the complexity

of the convergence rate is O(1/t) [30].
Compared with ISTA, the FISTA algorithm can significantly accelerate the speed of convergence

[31]. The procedure of iteration is as follows:

xt ← pL(ut−1 − γt∇D(ut−1)), (11)

qt ← (1 +
√︂

1 + 4q2
t−1)/2, (12)

ut ← xt + ((qt−1 − 1)/qt)(xt − xt−1), (13)
where u0 = x0 and q0 = 1. When the step size is invariant, the final convergence rate can reach
O(1/t2) [31], which significantly speeds up the image reconstruction, especially for 3D images,
so it is crucial for solving the linear inverse problem with a large amount of data.

In TV calculation, one should particularly note the nested iteration problem, which is likely
to cause extremely slow reconstruction when dealing with large-scale imaging problems in 3D
computational imaging. Therefore, the optimization for FISTA is essential. The fast-parallel
proximal algorithm of the FISTA counterpart is [30]:

zt ← ut−1 − γtHT (Hut−1 − y), (14)

xt ←
1
K

K∑︂
k=1

WT
k Γ(Wkzt;

√
2Kλγt), (15)

qt ← (1 +
√︂

1 + 4q2
t−1)/2, (16)

ut ← xt + ((qt−1 − 1)/qt)(xt − xt−1), (17)
where u0 = x0, q0 = 1, Γ(y; ε) = max(|y| − ε, 0) y

|y | , γ = 2
√

2D, K = 2D, λ denotes the coefficient
of regularization term and, as mentioned above, γt is the step size, D represents the dimensionality
of the image. Wk is expressed as an orthogonal wavelet decomposition of the image, and the
speed of convergence of the fast parallel proximal algorithm can be proved to be still O(1/t2), but
effectively help to solve the nested iteration problem [30].

2.4. TV-FISTA-SIM

We propose an iterative spatial reconstruction algorithm termed TV-FISTA-SIM, which signifi-
cantly accelerates and realizes a high-quality 3D-SIM reconstruction. We regard the process
of 3D-SIM reconstruction as a minimum optimization problem for the loss function with total
variational regularization term:

F = f + g, (18)

f =

∥︁∥︁∥︁∥︁∥︁∑︂m
(Jm(rxy)Sest(r)) ⊗ Hm(r) − D(r)

∥︁∥︁∥︁∥︁∥︁2

2

, (19)

where g denotes the total variation regularization term in 3D form. We will apply the TV-FISTA-
SIM algorithm to reconstruct 3D-SIM images, and the partial derivation of the loss function
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concerning the estimation of the sample Sest(r) is [29]:

∂f
∂Sest

=
∑︂
m′
((
∑︂
m
(Jm(rxy)Sest(r)) ⊗ Hm(r) − D(r)) ⊗ Hm′(r)) · Jm′(rxy). (20)

Equation (14) can be formulated as:

zt ← ut−1 − γt
∂f
∂Sest

. (21)

To ensure the convergence in the iterative process of the TV-FISTA-SIM algorithm, we take
the step size as the reciprocal of the Lipschitz constant. We can solve the Lipschitz constant
related to the preset microscopy system through the Power Iteration algorithm [28] combined
with the 3D-SIM imaging model.

The overall reconstruction algorithm of TV-FISTA-SIM can be represented as follows.
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2.5. Principle for data reduction

The TV-FISTA-SIM can achieve high-quality reconstruction results with a small amount of
original data but close to the results with complete data, which greatly improves the temporal
resolution of the system. The data reduction strategy is by reducing the number of images with
different phases in each illumination direction.

The low data dependence of TV-FISTA-SIM mainly comes from two aspects. First, with
interference patterns, the high-frequency components of the object are down-modulated into the
support domain of OTF. There contains no additional high-frequency information in images
with different numbers of phase shifts in a single illumination direction. The conventional linear
reconstruction algorithm obtains five high-frequency components with different orders by solving
the linear equations and then stitches these components together through the Wiener Filter-based
SIM reconstruction algorithm (Wiener-SIM) [3,19,20]. However, linear equations will be
underdetermined if the number of acquired images is less than five. By solving underdetermined
equations as an optimization problem and adding regularization constraints (to ensure the
uniqueness of the solution), we can still obtain the corresponding high-frequency components
with a low error, which is included in the iterations of the TV-FISTA-SIM algorithm. Second,
the high-frequency information in different illumination directions has overlapping areas in the
Fourier domain. Thus, data redundancy exists in these areas, and the actual number of constraints
will be twice the number of phases (i.e., even if there are only three phases, these overlapping
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areas will have six constraints, more than five, to make an overdetermined system of equations).
As pointed out in [38,39] regarding the Fourier Ptychography Microscopy (FPM), the iterative
results relate to the overlap rate between different apertures. The data redundancy in these
overlapping areas provides constraints for the convergence of the iterative algorithm. Due to
redundancy, reducing the amount of data with different interference phases is feasible.

3. Simulation results and discussion

Simulated data has been used to verify the validity of TV-FISTA-SIM, including sparse fluorescent
beads and non-sparse biological samples. Several parameters of the microscopy system are
preset as follows: excitation wavelength λex= 561 nm, emission wavelength λem= 590 nm,
numerical aperture NA= 1.49, the refractive index of the embedding medium n= 1.518, the
angle between each side beam direction and the optical axis θ = 60◦; The pixel size is set to 10
nm in the sample of sparse fluorescent beads and 60 nm in the continuous biological samples.
Under the 3D-SIM imaging process, fifteen raw volumetric image stacks are simulated with
different three-dimensional illumination patterns. For the best axial resolution for verification
and comparison, the I5S imaging model is adopted. The algorithm can also be applied to the
general 3D-SIM model, which is much simpler than I5S.

After reconstruction, the super-resolution volumetric results are normalized, and we utilize
Structure Similarity Index Measure (SSIM), and root-mean-squared error (RMSE) to quantify
and evaluate the 3D image reconstruction effect:

RMSE =

⌜⎷
1
m

m∑︂
i=1
(yi − ŷi), (22)

where m denotes the number of pixels in the volumetric sample, yi refers to the value of the i-th
pixel in the reconstructed image stack, and ŷi refers to the value of the i-th pixel in the ground
truth.

3.1. Robustness of the TV-FISTA-SIM to noises

A primary motivation of this study is the potential capability of TV-FISTA-SIM for addressing
low-SNR reconstruction problems in 3D-SIM. Traditional SIM reconstruction requires high-
SNR images to ensure high-quality reconstruction results [19,27,28], which may easily cause
photobleaching and phototoxicity and limits the further application of live-cell imaging.

To verify the robustness of the algorithm, we first apply TV-FISTA-SIM to sparse samples with
different noise levels. The simulated sample volume consists of thousands of 10-nm fluorescent
beads sparsely seeded at random 3D locations, and the product of the sample and the illumination
patterns are convolved with the 3D PSF calculated with the preset microscope parameters. Then,
the raw volumes are corrupted with Gaussian noise in different noisy conditions, ranging from
SNR 5 dB to SNR 25 dB, to simulate raw 3D-SIM image volumes.

Under different SNR conditions, sparse fluorescent beads samples are reconstructed using
TV-FISTA-SIM in 100 iterations. Typical reconstruction results of a single slice from sample
volumes with TV-FISTA-SIM are displayed in Fig. 1(a)-(e) with corresponding wide-field images,
and the statistics are shown in Fig. 2. The results show that TV-FISTA-SIM performs well
laterally and axially, and higher SNR results in better reconstruction performance. Importantly,
even when fed with poor data whose SNR is as low as 5 dB in Fig. 1(a), the reconstruction
result of TV-FISTA-SIM is very similar to the high SNR conditions and contains no apparent
artifacts, indicating the great potential of TV-FISTA-SIM in 3D-SIM reconstruction under low
SNR conditions.

To more accurately verify the strength of TV-FISTA-SIM in high-noise situations, we compare
the reconstruction results using TV-FISTA-SIM with Wiener-SIM and NGD-SIM. Under the
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Fig. 1. Simulation results of fluorescent beads using TV-FISTA-SIM. (a)-(e) The wide-field
(WF) images and TV-FISTA-SIM reconstructed images at different SNR. The lateral views
(upper) show one single slice of the image volumes, and the axial views (lower) represent
the single slice indicated by the white dashed line in (a)-(e). Scale bar: 500 nm.

Fig. 2. (a) The statistical quantification of Root Mean Squared Error (RMSE, blue) and Full
Width at Half Maximum (FWHM, magenta) and (b) Structure Similarity Index Measure
(SSIM) indicated by white arrows of reconstructed 3D images v.s. SNR in Fig. 1(a)-(e).

condition of SNR 5 dB, the wide-field image, Wiener-SIM reconstruction result, TV-FISTA-SIM
reconstruction result in 100 iterations, and NGD-SIM reconstruction result in 400 iterations are
displayed in Fig. 3(a)-(d). The coefficients of total variation regularizer are set to zero in the
reconstruction of TV-FISTA-SIM. The X-Y profiles along the white line and the Z profiles along
the red line indicated in Fig. 3(a)-(d) are shown in Fig. 3(e) and Fig. 3(f), respectively. The
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reconstruction using TV-FISTA-SIM has the highest fidelity reconstruction and contains the
least artifacts. Furthermore, the axial resolution of wide-field, Wiener-SIM, NGD-SIM, and
TV-FISTA-SIM can be quantified in FWHM as 215.1 nm, 139.1 nm, 122.9 nm, and 112.5 nm
accordingly, which proves TV-FISTA-SIM delivers the most optimal reconstruction in extreme
high-noise conditions.

Fig. 3. Simulation results of fluorescent beads using different 3D-SIM reconstruction
algorithms. (a)-(d) One single slice from raw wide-field image volume in SNR 5 dB (a),
3D-SIM image volume reconstructed with conventional Wiener-SIM (b), NGD-SIM (c),
and TV-FISTA-SIM (d). Lateral (upper) and axial (lower) cross-sections are presented,
respectively. (e) The X-Y intensity profile of the line indicated by white arrows in (a)-(d). (f)
The Z intensity profile of the line indicated by red arrows in (a)-(d). Scale bar: 500 nm.

For non-sparse biological samples, TV-FISTA-SIM also shows great reconstruction abilities
under high-noise imaging conditions. At a SNR 5 dB, Fig. 4(a) displays one single slice from a
wide-field volumetric microtubules sample with excitation wavelength λex= 561 nm, Fig. 4(b)-(d)
show the same slice after reconstruction with different 3D-SIM algorithms. The Wiener-SIM
reconstruction in Fig. 4(b) shows low resolution and artifacts under high-noise conditions,
indicating a failed reconstruction. The NGD-SIM algorithm with 600 iterations in Fig. 4(c) can
achieve high-resolution reconstruction in the case of high noise, but some artifacts and fractures
still show its poor detail reconstruction.

In addition, the reconstruction results using TV-FISTA-SIM in Fig. 4(d) have the highest
resolution, the least artifacts, and the best image continuity. To quantify the reconstruction
performance of the three algorithms on microtubules, in Fig. 5, we plotted the RMSE and SSIM
from the reconstruction of the volumetric microtubule samples with different levels of noise,
where it can be clearly seen that the TV-FISTA-SIM has the lowest RMSE and the highest SSIM
over all SNR conditions.
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Fig. 4. Comparisons of microtubules between Wide Field (a), Wiener-SIM (b), NGD-SIM
(c), and TV-FISTA-SIM (d) under SNR 5. Scale bar: 5 µm, 1.5 µm (zoom-in regions of
Fig. 4(a)-(d)).

Fig. 5. (a) The root-mean-squared error (RMSE) and (b) Structure Similarity Index Measure
(SSIM) of the reconstructed 3D microtubule images vs SNR by algorithms of TV-FISTA-SIM
(100 iterations, blue), NGD-SIM (600 iterations, magenta), and Wiener-SIM (black).

3.2. High-quality reconstruction in reduced data

Apart from reconstructing high-quality images from low SNR raw data due to less exposure
time, reducing the required data for acquisition and reconstruction is also essential. However,
with less data, the reconstruction quality inevitably degrades. TV-FISTA-SIM shows better
reconstruction than other algorithms, but it is vital to improving the effect further. The methods
of regularization are often used to solve ill-posed inverse problems. In order to reduce the impact
of the degradation caused by less data, we utilize the total variation regularizer in the optimization
process, which significantly improves the reconstruction quality.

We apply the TV-FISTA-SIM algorithm with a total-variation coefficient greater than zero to
reconstruct the 3D microtubule images with SNR as low as 5 dB and phase number as few as
1, the most extreme reconstruction condition. Figure 6(a)-(d) shows the reconstruction results
under different total variation coefficients. With the addition of a total variation regularizer, a
significant improvement can be seen in the image reconstruction. Furthermore, we use RMSE to
quantitatively evaluate the performance of TV-FISTA-SIM in reduced data, in which numbers of
phase reduce from five to one, with different total variation coefficients in Fig. 6(e). The overall
RMSE curves in Fig. 6(e) display a downward trend within a specific range. Therefore, we can
easily find the optimal total variation coefficient corresponding to the minimum RMSE, and at
that point, the volumetric reconstruction effect will also present the optimal results. Furthermore,
with different SNR conditions, the reconstruction quality could be improved by total variation
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regularizer as well. With the combined evaluation of the RMSE and SSIM, similar enhancements
for 3D reconstruction are shown in Fig. 6(f) and Fig. 6(g).

Fig. 6. (a)-(d) Comparisons of one single slice from reconstructed microtubules volumes
under SNR 5 with different total variation parameters. The phase number in single direction
is set to one, meaning total three images for reconstruction. Scale bar: 5 µm, 1.5 µm
(zoom-in regions of Fig. 6(a)-(d)). (e) The RMSE under SNR 5 with different total variation
parameters. Each curve represents different phase numbers used for reconstruction. (f) The
RMSE with different total variation parameters. (g) The SSIM with different total variation
parameters. Each curve in (f) and (g) represents different input SNR conditions with full
data.

It should be noted that total variation can be understood as a constraint and an introduction of
sparsity on images, in which the value of the total variation coefficient will play a key role. If the
coefficient is too small, the constraint is insufficient, and the reconstruction may not be improved
significantly (Fig. 6(b)). On the contrary, if the value is too large because the total variation
helps maintain image continuity and smooth the image, it is likely to result in pixels connected
(Fig. 6(d)), affecting the resolution and reconstruction. Additionally, the constraints of the
regularizer depends on the actual condition and prior information, such as the types of samples,
the noisy condition, the percentage of input sparsity, etc. Therefore, balancing the reconstruction
and the actual imaging effects is necessary when adjusting total variation coefficients, which is
like the parameter adjustment strategy in other SIM algorithms [19,29]. We generally recommend
that users select appropriate parameters between 1e-6 and 1e-3 according to the actual situation.

3.3. Convergence rate of algorithms

In order to quantify the convergence rate and single iteration rate of TV-FISTA-SIM, a comparison
with other similar gradient descent algorithms, NGD-SIM, and GD-SIM, is done. All algorithms
were coded in MATLAB2020a and executed on the same device (Intel Xeon Gold 5120 CPU,
2.2GHz, NVIDIA Quadro P6000, RAM 128GB). The test sample is a simulated microtubules
volume with the pixel size at 50 nm, which has also been chosen for simulated reconstruction in
Ref. [29] and publicly released.
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For the convergence rate, because TV-FISTA-SIM has the theoretical convergence rate
O(1/t2), which shows a substantial advantage over NGD-SIM and GD-SIM. Figure 7 shows
the convergence rate of the three algorithms evaluated by RMSE. In order to reach a RMSE of
1.65e-3, TV-FISTA-SIM only requires 259 iterations, while NGD-SIM needs 912 iterations and
GD-SIM 2819 iterations. With the reduction of RMSE, the advantages of TV-FISTA-SIM will
become more and more evident. The zoom-in region in Fig. 7 shows that the convergence rate of
TV-FISTA-SIM before the first 50 iterations is slightly lower than NGD-SIM and GD-SIM, which
is caused by the difference between the iteration processes but does not affect the conclusion. In
terms of single iteration rate, TV-FISTA-SIM needs 2.34 s and NGD-SIM 1.51 s on average. A
clearer comparison of reconstruction speed is shown in Table 1.

Fig. 7. Performances of reconstruction by GD-SIM, NGD-SIM, and TV-FISTA-SIM with
different number of iterations. The performances of the reconstructed microtubules are
measured by Root Mean Squared Error (RMSE).

Table 1. Reconstruction speed of different iterative algorithms for 3D-SIM in Fig. 7

GD-SIM NGD-SIM TV-FISTA-SIM

Single Iteration Time (s) 1.31 1.51 2.34

Iteration Number 2819 912 259

Reconstruction Time (min) 61.5 23.0 10.1

3.4. Multi-color 3D imaging

Multi-color three-dimensional imaging is of great significance for observing biological structures
and interaction mechanisms of cells. To verify the reconstruction effect of TV-FISTA-SIM on
actual 3D samples with different excitation wavelengths and organelles, the 3D imaging samples
have been tested in simulation. Figure 8 shows three reconstructed biological structures using
Wiener-SIM, NGD-SIM and TV-FISTA-SIM and their wide-field images with the intensity-
projection of the volumes, including mitochondrion (488 nm), microtubules (561 nm), and
microfilaments (640 nm). As shown in Fig. 8, the performances of the NGD-SIM show a greater
resolution and less background noise than Wiener-SIM but remain visible diagonal streak artifacts.
Moreover, the statistical analysis in Tables 2 and 3 quantifies that the TV-FISTA-SIM typically
realizes the best imaging performances in terms of all three wavelength illuminated samples
with different structures, which demonstrates its reconstruction superiority. To better display the
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Fig. 8. Comparison of multi-color 3D-SIM reconstruction via Wiener-SIM, NGD-SIM and
TV-FISTA-SIM with the intensity-projection of the volumes. (a-c) Reconstruction results of
the Wiener-SIM, (d-f) NGD-SIM and (g-i) TV-FISTA-SIM of the Mitochondrion (488 nm,
first column), Microtubules (561 nm, second column) and Microfilaments (640 nm, third
column). Scale bar: 5 µm.

Table 2. The RMSE of multi-color 3D-SIM reconstruction with different algorithms in Fig. 8

Wiener-SIM NGD-SIM TV-FISTA-SIM

Mitochondrion (488 nm) 2.01e-3 1.80e-3 5.53e-4

Microtubules (561 nm) 3.32e-3 1.06e-3 2.47e-4

Microfilaments (640 nm) 2.43e-3 2.0e-3 4.24e-4

achievements of multi-color imaging with TV-FISTA-SIM, the Fig. 9 contains the reconstructed
3D sample (left) with the color-coded depth and transparency-characterized intensity information
and the original wide-field image (right). We can clearly see that compared with the wide-field
image; the 3D sample reconstructed by TV-FISTA-SIM has significantly improved resolution.
This shows that TV-FISTA-SIM performs strongly in simulated multi-color 3D imaging as well,
which will greatly expand the scope of application for the proposed algorithm in the future.
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Fig. 9. Simulation of 3D imaging results of mitochondrion (488nm), microtubules (561nm),
and microfilaments (640nm). Reconstructed 3D imaging results using TV-FISTA-SIM (left).
The color encodes axial positions. Wide Field image with the intensity-projection of the
volumes (right). Scale bar: 5 µm.

Table 3. The SSIM of multi-color 3D-SIM reconstruction with different algorithms in Fig. 8

Wiener-SIM NGD-SIM TV-FISTA-SIM

Mitochondrion (488 nm) 0.8120 0.9288 0.9845

Microtubules (561 nm) 0.8413 0.9474 0.9887

Microfilaments (640 nm) 0.8693 0.9610 0.9842

4. Conclusion

We have proposed the TV-FISTA-SIM method as a novel 3D-SIM reconstruction algorithm and
demonstrated it for high-quality volumetric reconstruction. Compared with the conventional
3D-SIM algorithms, TV-FISTA-SIM can achieve higher resolution with fewer artifacts under
high-noise conditions. Moreover, TV-FISTA-SIM shows excellent potential to realize high-
fidelity reconstruction with the reduction of original data, making it promising for real-time
3D-SIM imaging. TV-FISTA-SIM also has a faster convergence rate, which significantly
improves the possibility of the algorithm into practical applications. More importantly, we
verify that the TV-FISTA-SIM remains high-quality reconstruction in the case of 3D multi-color
biological organelles. The proposed method can be applied to many illumination fringes,
including sinusoidal and speckle patterns. In the future, we will explore the application of the
TV-FISTA-SIM in the actual imaging scenes. We expect that our method can inspire further
investigations and applications of 3D-SIM.
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