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Abstract: Three-dimensional structured illumination microscopy (3D-SIM) is an essential
tool for volumetric fluorescence imaging, which improves both axial and lateral resolution by
down-modulating high-frequency information of the sample into the passband of optical transfer
function (OTF). And when combining with the 4Pi structure, the performance of 3D-SIM can be
further improved. The reconstruction results of generally used linear 3D algorithm, however,
are lack of high-fidelity and proneess to generate artifacts. In this paper, we proposed a novel
iterative algorithm based on gradient descent combined with a nonlinear optimizer, which can
be applied to all 3D-SIM setups (including I5S setup). We verified through simulation that the
proposed solution, termed as nonlinear gradient descent structured illumination microscopy
(NGD-SIM), achieves more fidelity results which can reach the limitation of theoretical resolution
improvement of SIM. Moreover, it can be firmly validated on simulation that this algorithm
can effectively reduce the amount of raw data in the case of sinusoidal-pattern illumination,
i.e., the algorithm doesn’t need five-step phase shifting; data with any number of phases can
theoretically be reconstructed. Our method also provides the possibility to extend the application
of sinusoidal-pattern illumination to any kind of interference fringe, which is generated by
diversified types of illumination mode.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since it was proposed and invented, optical fluorescence microscopy has become an irreplaceable
method for biomedical researches. However, because of the diffraction limit, the resolution of
conventional microscopes is constrained to around 200 nm, which is not sufficient for developing
research requirements. In order to go beyond the diffraction limit, diversified solutions have been
developed in the last two decades. These methods, such as photoactivated localization microscopy
(PALM) [1,2] and stochastic optical reconstruction microscopy (STORM) [3,4], rely on statistical
computations and repetitive shootings to surpass the diffraction limit. And stimulated emission
depletion microscopy (STED) [5] is based on scanning confocal microscopy to “reshape” the
point spread function (PSF) of the system. Compared with what is mentioned above, structured
illumination microscopy (SIM) [6–8] plays an essential role in live-cell imaging. STORM and
PALM are supposed to use thousands of images to localize each emitter, which makes it difficult
to observe living cells, owing to long-time imaging procedure and drift. Furthermore, the light
intensity required in STED is much higher than SIM, and it may cause severe photobleaching and
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phototoxicity. In contrast, SIM takes much less time in the imaging step and uses significantly
lower light to obtain images.

Due to the shape of Optical Transfer Function (OTF), which is confined by Numerical Aperture
(NA) [9], in the spatial frequency domain, the lateral resolution is several times better than the
axial resolution. Considering the limit of light collecting angle, which determines NA for a
single objective lens, a second objective lens is used and placed in a symmetrical position with
the first objective lens about the focal plane. By using two objective lenses, the light collecting
angle is doubled, and the new OTF can be stretched in axial direction correspondingly. The
method that uses two identical objective lenses was applied in fluorescence microscopy such
as 4Pi-B confocal microscopy [10], I2M [11] and I5M [12]. For SIM, by combining I5M and
structured illumination, which is termed I5S [13], the axial resolution can be improved more than
twice; that is, the OTF will be further stretched in SIM.

In order to reconstruct super-resolution images from SIM, numerous algorithms have been
reported [6,14–17]. But nearly most of them aim at solving two-dimensional problems. In
three-dimensional imaging, the most commonly used algorithm is the Wiener filtering strategy
(later, we will use Wiener-Filter SIM to refer to this linear 3D-SIM reconstruction algorithm)
[13,18], which is not accurate enough and usually produces artifacts. In this manuscript, we report
a novel algorithm called Nonlinear Gradient Descent SIM (NGD-SIM) by utilizing a gradient
descent mechanism with a nonlinear optimizer, which is widely used in deep learning and many
other applications. A similar gradient descent method has been applied in two-dimensional
Fourier ptychographic microscopy called PEFP to estimate the information of Interference fringes
[19]. Here we expand this idea to 3D-SIM to calculate 3D object iteratively. The nonlinear
gradient descent algorithm will accelerate the convergence of the iterative process. The new
method demonstrates that it can perform ideally in both sparse and continuous samples according
to simulations. In the meantime, compared with former techniques, the resolution and quality of
reconstructed images obtained by NGD-SIM can be improved to a better degree both laterally and
axially. According to simulations on MATLAB, the best lateral and axial resolution can reach
102.5nm and 62.5nm respectively (comparing with Wiener-Filter SIM, which are 140nm and
85nm under the same empirical condition). Our algorithm, to some extent, can greatly reduce
the amount of the raw image data used in reconstruction and improve the temporal resolution
consequently.

2. Principle

2.1. Forward model of the imaging process

Three-dimensional structured illumination microscopy is a linear, translation-invariant (LTI)
optical system, whose response can be described by Transfer Function (in optical system, it is
named PSF) H(r) and convolution theory. The observed diffraction-limited data D(r) is the
convolution of the pointwise product of the illumination pattern I(r) and the emitting object S(r)
with the PSF.

D(r) = [I(r) · S(r)] ∗ H(r) (1)

Where r denotes real-space coordinate vector and ∗ refers to convolution.
Owing to the moiré fringe effect, the illumination pattern I(r) in Eq. (1) down-modulates the

original undetectable high-frequency components of the object into the passband of the detection
OTF support [20, 21]. And these high-frequency components can be straightforwardly extracted
if the illumination pattern satisfies the following conditions [13, 18]: First, the illumination
pattern can be decomposed into a sum of a finite number of components, each of which is
separated into a production of an axial and a lateral function. The specific expression is as
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follows:
I(r) =

∑︂
m

Im(z)Jm(rxy) (2)

where m= 0, ±1, ±2; Jm(rxy) and Im(z) denotes lateral and axial illumination intensity in the real-
space domain respectively. Second, each lateral function should be a simple harmonic function
(i.e., Jm(rxy) can be expressed as eim(2πprxy+ϕ), which implied that J̃m(kxy) = δ(kxy − mp)eimϕ .
Third, relative to the focal plane of the microscope, the illumination patterns are supposed to
remain fixed when acquiring a volumetric data set by moving the region of interest of the sample
to the focal plane along the z-axis. Under the above conditions, combining Eq. (1) and Eq. (2),
The observed diffraction-limited data D(r) can be rewritten as Eq. (3),

D(r) =
∑︁

m Jm(rxy)S(r) ∗ (Im(z)H(r))

=
∑︁

m (Jm(rxy)S(r)) ∗ Hm(r)
(3)

In Eq. (3), the specific form of Jm(rxy) has been given above, and here we give the form of
Im(z). It needs to be clearly stated that Jm(rxy) has the same expressions for 3D-SIM and I5S,
while the expressions of Im(z) are slightly different. The expressions of Im(z) for 3D-SIM are
shown in Eq. (4) and I5S in Eq. (5),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I0(z) = 3

I±1(z) = ei2πpz1z + e−i2πpz1z

I±2(z) = 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I0(z) = 6 + 2ei2π(2pz2−2pz1)z + 2e−i2π(2pz2−2pz1)z + ei2π2pz2z + e−i2π2pz2z

I±1(z) = 2ei2π2pz1z + 2e−i2π2pz1z + 2ei2π(2pz2−pz1)z + 2e−i2π(2pz2−pz1)z

I±1(z) = 2 + ei2π(2pz2−2pz1)z + e−i2π(2pz2−2pz1)z

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5)

where pz1 equals to 1
λex

(1 − cos θ) and pz2 equals to 1
λex

. θ denotes the angle between the center
beam and the side beam. λex denotes wavelength of excitation light.

The Fourier transform of Eq. (3) takes the form:

D̃(k) =
∑︂

m
eimϕ S̃(k − mp) · Õm(k) =

∑︂
m

eimϕD̃m(k) (6)

where k denotes the coordinate vector in reciprocal space
Equation (6) reveals that the acquired volumetric data is a mixture of the different frequency

bands of the sample, one for each index m. If these different frequency bands can be moved to
the correct position, it is equivalent to artificially expanding the support of the original OTF
(synthetic OTF). However, the range of the synthetic OTF support in the Fourier domain depends
on the distribution of frequency shift points formed by Ĩ(k) (Ĩ(k) is the Fourier transform of the
illumination pattern I(r), which is expressed as the accumulation of a series of δ functions, and each
δ function represents a frequency shift point). For the general 3D-SIM (three-beam illumination,
single objective lens reception) and I5S (symmetrically two-sided three-beam illumination,
double objective lens reception), the illumination pattern I(r) is different, specifically expressed
as different expressions of Im(z) (refer to Eq. (4) and Eq. (5)). Therefore, I5S will produce more
frequency shift points in the Fourier domain than the 3D-SIM. At the same time, due to the dual
objective lens reception, the detection OTF support of the I5S will be extended in the kz direction
than the original OTF support of 3D-SIM. The above two effects combine to make the axial
resolution of I5S higher than that of 3D-SIM. The corresponding original OTF, synthesized OTF,
and Fourier domain frequency shift points distribution comparison diagrams of 3D-SIM and I5S
are shown in Fig. 1.



Research Article Vol. 29, No. 14 / 5 July 2021 / Optics Express 21431

Fig. 1. OTF support by 3D-SIM and I5S in 3D rendering. (a) The OTF support of
conventional optical microscope. (b) The OTF support of I5S, compared with OTF using a
single objective lens, is stretched in the kz axis. (c) Effective OTF support is produced by
three-beam illumination in ordinary 3D-SIM. (d) The effective OTF support by illumination
with six beams and detection through two opposing objective lenses. (e) The frequency
shifts under the different illumination modes. The red dots denote extended frequency shift
when using interference of three beams; The purple dots represent the extra frequency shifts
for six beams by applying I5S, which will never be present in ordinary 3D-SIM (Three-beam
interference).

2.2. Sample reconstruction of Wiener-SIM

The conventional sample reconstruction method firstly separates these information components
by acquiring additional images with varying illumination pattern phases mφ to construct a set of
five independent linear equations from which D̃m(k) can be extracted. Then D̃m(k) is moved back
to their correct position, that is, ±mp and a linear and normalized Wiener filtering algorithm
is utilized to stitch these components into a high-resolution image containing high-frequency
information.

The Wiener-filter SIM stitched these components using Wiener filtering strategy and it can be
realized by the following formula if D̃m(k) has been solved.

S̃(k) =

∑︁
m

Õ∗
m(k + mp)D̃m(k + mp)∑︁

m
|Õm′(k + mp)|2 + ω2

A(k) (7)

Where S̃(k) is the estimate of the true sample information and ω2 is the Wiener parameter.
A(k) is an apodization function which is used to reduce the frequency components outside the
synthesized OTF support to zero.

2.3. Sample reconstruction of NGD-SIM

Here we propose an iterative algorithm combined with a nonlinear optimizer based on gradient
descent that does not require solving linear equations and can obtain a higher fidelity of
reconstructed image while greatly reducing the volume of the raw data.
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We regard the sample reconstruction process as a minimization problem and construct following
loss function,

f =
∥︁∥︁∥︁∑︂

m
(Jm(rxy)Sest(r)) ∗ Hm(r) − P(r)

∥︁∥︁∥︁2
(8)

where Sest(r) denotes the estimation of the sample and P(r) denotes the captured volumetric data;
∥·∥2 is the square of the L2 norm.

The partial derivation of the loss function with respect to Sest(r) is

δf
δSest

=
∑︂

m′
[
∑︂

m
(Jm(rxy)Sest(r) ∗ Hm(r) − P(r)) ∗ Hm′(r)] · Jm′(rxy) (9)

According to Eq. (9), a conventional gradient descent algorithm can be used to update Sest(r),

S∼update
est (r) = Sest(r) − k

δf
δSest

(10)

where k denotes the learning rate of which we recommend take the value as 1/3 when all physical
parameters participating in the iteration have been normalized. In fact, the value of 1/3 is
that we take the reciprocal of the Lipschitz constant L of the system (i.e. 1/L) as the step size
of the gradient descent. This choice is a conservative choice that must be able to converge.
The explanation of Lipschitz constant and how to calculate Lipschitz constant are given in
Appendix A.

To speed up the convergence rate, we learn from the strategy of machine learning and introduce
Root Mean Square Propagation (RMSProp) [22] nonlinear optimizer into the gradient descent
process. Then Eq. (7) will evolve into the following form,

V∼update = β

(︃
δf
δSest

)︃2
+ (1 − β)V (11)

S∼update
est (r) = Sest(r) −

δf
δSest

(V∼update)
α
+ ε

(12)

where we recommend a value of 0.99 for parameter β and 0.1 for parameter α. ε is set to 10−7 by
default and the initial value of V is set to zero. In fact, Eq. (11) calculates the cumulative sum of
decayed gradient squared and β represents the decay rate. Equation (12) takes the reciprocal of
the sum of decayed gradient squared as the final equivalent gradient which reduce the differences
of update rate between different features, and uses an exponential factor α to control the overall
update step size. Regarding the choice of parameters here, we refer to the choices in the original
literature for β and ε, and we found that the α value (0.5) in the original literature does not make
the algorithm converge. We enumerated the α parameters and chose 0.1 as the recommended
value for α, which shows the fastest convergence rate. The effect of specific α parameters on the
convergence speed and reconstruction results can be found in Appendix B. Refer to Appendix C
for the comparison of convergence speed and reconstruction results between NGD-SIM and
gradient descent SIM (GD-SIM) without a nonlinear optimizer.

Owing to the fact that the intensity of the sample is non-negative, a correction needs to be
added at the end of each iteration.

S∼update
est (S∼update

est <0) = 0 (13)

The above reconstruction process indicates that the proposed algorithm does not require five-
step phase shifting to acquire different frequency bands of the sample D̃m(k). In the simulation,
the observed diffraction-limited data with only one phase is available to acquire better results than
using Wiener Filter while more phase redundancy can improve the accuracy and noise tolerance
of the reconstruction results.



Research Article Vol. 29, No. 14 / 5 July 2021 / Optics Express 21433

3. Results and analysis of simulation

In order to validate the performance of our algorithm, several simulations have been done under
the conditions of both sparse and continuous samples. In order to fit the practical experiments,
relevant parameters are preset as close to the actual situations as possible: excitation wavelength
λex = 640 nm, emission wavelength λem = 670 nm, numerical aperture NA= 1.49, refractive index
of the embedding medium n= 1.518, the aperture angle θ= 60°, The amount of phase shift each
time φ = 2

mπ, where m is the total number of phase shifting. These parameters can define the
wave number k and OTF in the frequency domain correspondingly. The pixel size in the simulated
continuous samples is set as 50 nm which is compatible with the pixel size of EMCCD and in the
sparse samples is set as 10 nm in order to get a better quantitative resolution for comparison. To
comparing with ordinary Wiener Filter, the simulated pattern will have three orientations (0°,
60°, 120°) and five-phase shifts to fit the requirements of Wiener Filter. Hence up to 15 raw
images are recorded for each 3D sample. Furthermore, we also simulated the situation when the
number of phase shifting is from one to five to prove that NGD-SIM can effectively reduce the
amount of raw data. To obtain best axial resolution, all the simulated data are made from I5S
imaging model which is more complex than general 3D-SIM.

We first apply NGD-SIM (using different number of phases) and Wiener Filter to 87 simulated
sparse fluorescent 10nm-diameter beads to demonstrate the reconstruction ability. The results
are shown in Fig. 2. The lateral slices (Fig. 2(a2)-(f2)) and profiles (Fig. 2(g1), (g2)) illustrate a
significant improvement in lateral resolution by using NGD-SIM. With increasing the number
of phases used, the fidelity of NGD-SIM performs better. Comparing with the full width at
half maximum (FWHM) of Wiener Filter which is 140 nm, the FWHM of NGD-SIM reaches
125 nm, 123 nm, 122.5 nm, 120 nm and 102.5 nm when applying 1 to 5 phases respectively; In
addition, the axial slices (Fig. 2(a3)-(f3)) and profiles (Fig. 2(h1), (h2)) demonstrate that striking
improvement in resolution can achieve in both axial and lateral direction. In traditional Wiener
Filter, the FWHM of axial profile is around 85 nm, nonetheless, by using different number of
phases, it can reach 70 nm, 64 nm, 67.5 nm, 62.5 nm and 62.5 nm respectively. It is also worth
finding that with increasing the number of phases, the out-of-focus information can be suppressed,
and when using 15 images these blurred patterns are totally removed, which denotes the axial
resolution improvement. In Fig. 2(h2), When using 1 phase (3 images), the position of profile
peak is deviated slightly (as depicted in the sky-blue curve). This is because when the number of
phase shifts is too small, the process of iteration will produce errors in the calculation of the
position of a single point. Therefore, though the 1-phase reconstruction result of NGD-SIM
outperforms the result when using Wiener Filter, it is best to use at least 3 phases (9 images) in
the image reconstruction procedure in the case of comprehensive consideration of resolution and
data volume.

For continuous and complex 3D objects, the wide-field simulated microtubules are restored by
both two techniques (Fig. 3). The wide field image shows severe out-of-focus blurring which
obscures the sample (Fig. 3(a1)). By using Wiener Filter (Fig. 3(c1)-(c3)), the blurring can be
removed effectively, but there are still many structures that remain unresolved. In contrast to
Wiener Filter, NGD-SIM performs much better in both axial and lateral direction especially
when applying 3 or more phases in this iterative algorithm (Fig. 3(d1)-(d3), (e1)-(e3)): the
out-of-focus information and artifacts are perfectly removed and the thickness of microtubules
is much slenderer (as shown in the yellow outlined regions). NGD-SIM outperforms Wiener
Filter in the position where fluorescence is densely distributed. Our solution also shows a
distinguishable function when using only 1 phase (3 images). Though it does recover a few
details which are even better than using Wiener Filter, the continuity of the whole image is still
destructed (Fig. 3(f3)). Therefore, after considering the tradeoff between the amount of data in
the algorithm and the effect of image reconstruction, we recommend that at least 3 phases of raw
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Fig. 2. Reconstruction results of simulated fluorescent beads of Wiener Filter and NGD-SIM
using different numbers of phases (images). (a1)-(f1) 3D perspective of images reconstructed
by Wiener Filter and NGD-SIM with 1–5 phases (3, 6, 9, 12, 15 images per slice) respectively.
(a2)-(f2) single xy slices of corresponding 3D results (outlined by yellow planes in (a1)-(f1))
which are recovered by Wiener Filter and NGD-SIM with 1–5 phases (3, 6, 9, 12, 15 images
per slice) respectively. (a3)-(f3) single xz slices of corresponding 3D results (outlined by blue
planes of (a1)-(f1)) which are recovered by Wiener Filter and NGD-SIM with 1–5 phases (3,
6, 9, 12, 15 images per slice) respectively. In order to make the comparisons clearer and
more intuitive, both the lateral profiles and axial profiles of single beads are divided into 2
groups: (g1) Lateral and (h1) axial profiles along the marked positions (the white arrows in
(a2), (d2), (f2) and (a3), (d3), (f3)) by Wiener Filter (blue line), NGD-SIM with 3 phases
(red line) and 5phases (black line) respectively; (g2) Lateral and (h2) axial profiles along the
marked positions (the white arrows in (b2)-(f2) and (b3)-(f3)) by NGD-SIM with 1–5 phases
(sapphire line, magenta line, red line, navy blue line and black line) respectively.
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Fig. 3. Reconstruction results of a complex sample of Wiener Filter and NGD-SIM using
different numbers of phases (images). (a1) 3D ground truth image. The yellow plane outlined
in (a1) indicates the corresponding location of slices shown in (a2),(b1)-(b2), (c3)-(f3) and
(c4)-(f4). (a2) Ground truth image of the yellow plane. (c1)-(c2), (d1)-(d2), (e1)-(e2),
(f1)-(f2) Lateral and axial 3D perspectives of the images reconstructed by NGD-SIM using
5, 3 and 1 phases (15, 9 and 3 images) respectively. The insets show expansions of the
yellow outlined regions of the images. (b1), (c3)-(f3) Single xy slices of wide field image,
Wiener Filter, NGD-SIM using different numbers of phases, respectively. (b2), (a4)-(f4)
Single xy slices with Poisson Noise of wide field image, Wiener Filter, NGD-SIM using
different numbers of phases, respectively. The SNR of recovered images (SNRr) is marked
on the upper right of each image.
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Fig. 4. single xy slices of reconstruction results of a complex sample by Wiener Filter and
NGD-SIM using different phase (image) numbers under different degree of noises. The
corresponding SNR of raw images (SNRi) is marked on the far left. The SNR of recovered
images (SNRr) is marked on the upper right of each image. (a1)-(f1) Reconstruction results
of Wiener Filter under different SNRi (different degree of Gaussian noises). (a2)-(f2) Results
of NGD-SIM reconstructed with 5 phases (15 images) under different SNRi. (a3)-(f3)
Results of NGD-SIM reconstructed with 3 phases (9 images) under different SNRi. (a4)-(f4)
Results of NGD-SIM reconstructed with 1 phase (3 images) under different SNRi.
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data should be used in the algorithm to process the image, so as to obtain reliable super-resolution
results while reducing the amount of data used.

In addition, in order to test the robustness of the proposed algorithm against noise, Poisson
noise, which is related to photon count and the system itself, is added to raw data stacks of
microtubules. As illustrated in Fig. 3(b2), (c4)-(f4), the resolution and quality of wide-field images
are degraded due to the noise. On the contrary, however, it is obvious that the novel algorithm
can still significantly improve the image quality, which is much better than the traditional method.
As for noise from the environment, different degree of Gaussian Noise is added to the whole
image stacks of simulated microtubules and thus makes the raw data has different Signal to Noise
Ratio (SNRi). Figure 4 shows the reconstruction results of these raw data by Wiener Filter and
NGD-SIM. It is obvious that no matter how the noise of raw data changes, the reconstruction
results of NGD-SIM are always more superior and obtain higher SNR (SNRr, as shown in Fig. 5)
than using Winer Filter and show stronger robustness to Gaussian Noise. Even the images
processed with 1 phase are better than traditional Wiener Filter. What must be taken into account
is the choice of parameter ω2 in Wiener Filter, so we choose ω2 which derives the best result to
compare with NGD-SIM. The detail of the relation between ω2 and reconstruction performances
of Wiener Filter is shown in Appendix D (Fig. 11).

Fig. 5. Reconstruction quality by Wiener Filter and NGD-SIM, measured by SNR (marked
as SNRr), with different SNR of raw images (marked as SNRi) and different numbers of
phases (images).

To quantitively measure the speed of NGD-SIM and Wiener Filter, both techniques were coded
by MATLAB2020a and executed on the same device (Intel(R) Xeon(R) Gold 5120 CPU, 2.2 GHz,
NVIDIA Quadro P6000, RAM 128GB). The size of a single frame image in the simulation is set
as 301×301 and one 3D data will contain 301 frames. In order to meet the requirements of using
GPU acceleration, we estimate that the memory of GPU needs at least 12G. The reconstruction
process of Wiener Filter will take around 600s (10 minutes). Considering to achieve results with
high-fidelity, we recommend presetting the number of iterations to 2000 when using NGD-SIM,
which will take around 3000s (50 minutes), i.e., it will take 1.5s per iteration on average.

4. Conclusion and discussion

We proposed a novel iterative algorithm, namely NGD-SIM, based on gradient descent combined
with a nonlinear optimizer called Root Mean Square Propagation (RMSprop), which allows
us to reconstruct 3D raw data and obtain reconstruction images with higher fidelity for all
kinds of 3D-SIM. Taking linear reconstruction algorithm for a reference, another distinguishing
advantage of NGD-SIM is that it requires a smaller number of raw images but can achieve
higher reconstruction resolution, which will greatly improve the imaging speed and temporal
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resolution of the system in actual imaging. The proposed method is proven to be applicable for
any illumination pattern, including both sinusoidal and speckle illumination. Therefore, it is
entirely possible to further reduce the number of captured imaged if the illumination pattern is
well-designed, like multi-spot patterns formed by the interference of four orthogonal light beams.
We believe NGD-SIM will provide a more effective and precise method in any 3D structured
illumination microscopic system or spatial frequency modulation super-resolution Imaging setup,
including I5S setup.

Appendix A: The definition and calculation of the Lipschitz constant

The definition of Lipschitz constant is as follows,
Assuming f: Rn → R is a smooth convex and continuously differentiable function with

Lipschitz continuous gradient L(f ):

∥∇f (x) − ∇f (y)∥ ≤ L(f ) ∥x − y∥ for every x, y ∈ Rn (14)

Where | | · | | denotes L2 norm and L(f ) ≥ 0 is the Lipschitz constant of ∇f .
In fact, the reciprocal of the Lipschitz constant of ∇f was firstly taken as the step size in the

Iterative Shrinkage/Thresholding algorithm (ISTA). The gradient descent algorithm and Iterative
Shrinkage/Thresholding algorithm are similar in form (if the regularization term in ISTA is
ignored, then the two algorithms are completely consistent). Literature [23] has proved in detail
that ISTA will converge with the nonasymptotic global rate of convergence O(1/k). For specific
derivations, readers can refer to Literature [23], and we will not repeat them here. Thus, based
on the above, we also take the step size of the gradient descent algorithm as 1/L.

The Lipschitz constant of ∇f is calculated by Power Iteration algorithm and we formulate
Power Iteration algorithm as follows:

Algorithm (Power Iteration)
Input: expression of ∇f , number of iterations N for Power Iteration algorithm
Initialization: x = 0
For n= 1, 2, . . . , N

x = ∇f (x)
End
y = ∇f (x)
L(f ) =

∑︁
x·y∑︁
x·x (

∑︁
A denotes the sum of all elements of matrix A and · denotes pointwise product)

Output: L(f ) of ∇f

Appendix B: The influence of α parameter on the convergence speed and recon-
struction results of NGD-SIM

Figure 6 illustrates the reconstruction results of NGD-SIM with different α by 2000 iterations.
And Fig. 7 further shows the Mean Square Error of reconstruction results as a function of α and
iteration number.
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Fig. 6. Reconstruction results of NGD-SIM (5 phases, 15 images) with different α. (a) A xy
slice of 3D groundtruth simulated sample. (b)-(i) Reconstruction results of NGD-SIM with
different α by 2000 iterations. Corresponding α is marked in the upper right corner of each
image.
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Fig. 7. Reconstruction performances with different α parameter and different number of
iterations. The performances are valued by Mean Square Error (MSE). The black dotted
box is an enlarged view of MSE under different α with the number of iterations around
1500–2000 times. When α= 0.1, the reconstruction result is best.

Appendix C: comparison of convergence between NGD-SIM and ordinary gradi-
ent descent algorithm

Fig. 8. Comparison of NGD-SIM and ordinary gradient descent algorithm (here marked as
GD-SIM) for simulated fluorescent beads. (a) The result of NGD-SIM with 2000 iterations.
(b1)-(b11) Results of GD-SIM with number of iterations from 1000 to 11000. The full width
at half maximum (FWHW) of the beads in the green boxes under the influence of iterations
is shown in Fig. 10.
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Figure 8 and Fig. 9 are reconstruction results of NGD-SIM (2000 iterations) and ordinary
gradient descent algorithm (GD-SIM, from 1000–12000 iterations). And Fig. 10 shows the MSE
of reconstructed microtubules and FWHM of reconstructed beads as a function of iteration. It is
obvious that NGD-SIM converges much fast than GD-SIM which denotes the better resolution
and less processing time.

Fig. 9. Comparison of NGD-SIM and ordinary gradient descent algorithm (here marked as
GD-SIM) for simulated microtubules. (a) a xy slice of 3D microtubules sample. (b) Results
of NGD-SIM with 2000 iterations. (c1)-(c6) Results of GD-SIM with number of iterations
from 2000 to 12000. The MSE of reconstructed results under the influence of iterations is
shown in Fig. X.

Fig. 10. Performances of reconstruction by NGD-SIM and GD-SIM with different number
of iterations. The performances of reconstructed microtubules and fluorescent beads are
measured by MSE and FWHM respectively. As shown in the black dotted lines, it is obvious
that the reconstruction effect of 2000 NGD-SIM iterations is comparable to the counterpart
with 12000 iterations for both simulated microtubules and fluorescent beads.
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Appendix D: relation between parameter ω2 and reconstruction results of Wiener
Filter

The following Fig. 11 depicts the influence of ω2 on the reconstruction performance of Wiener
Filter. It is wise to choose appropriate ω2 when processing raw data with different SNRi.

Fig. 11. Performances of reconstruction results by Wiener Filter with different parameter
ω2 and SNR of raw data (SNRi). The results are evaluated by SNR (marked as SNRr). The
mark ‘x’ denotes the corresponding ω value when the SNRr is the highest.
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